
Requirements for ElectionGuard version 1.91

Verifiers∗(amended November 8, 2023)

Moses Liskov
Matt Wilhelm

The ElectionGuard Partners
mliskov@mitre.org,matt.wilhelm@infernored.com

November 8, 2023

Abstract

This document will serve as the requirements/specification for any
Verifier for the ElectionGuard pilot occurring in College Park, Maryland
on Sunday, November 5, 2023 using “version 1.91” of the ElectionGuard
open source Software Development Toolkit (SDK), developed by Infer-
noRed Technologies.

This document is a joint publication of the ElectionGuard Partners
and the MITRE Corporation National Election Security Lab (NESL).

Introduction

This document will serve as the requirements/specification for any Verifier for
the ElectionGuard pilot occurring in College Park, Maryland on Sunday, Novem-
ber 5, 2023 using “version 1.91” of the ElectionGuard open source SDK, devel-
oped by InfernoRed Technologies.

This pilot election is based on an “in between” version of ElectionGuard, in-
corporating some elements of ElectionGuard version 2.0 [1] and some elements
of ElectionGuard version 1.53 [2], and in some cases differing from both speci-
fications.

The ElectionGuard team has articulated a scope for verification in this pilot
[4], and some verifications are not included in any form here for this reason.
Specifically, of the eighteen verifications described in the ElectionGuard version
2.0 specification [1], twelve are required, excluding Verifications 6, 11, 14, 15,
16, 17, and 18, and Verification 7 is reduced in scope. This document does

∗Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights
Reserved. Approved for public release, distribution unlimited. MITRE PRS case number 23-
3694.

1

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 2

not attempt to speak on the value of this reduced-scope verification; its goal is
merely to describe how to verify all the non-excluded verifications.

This document serves two purposes: first, to articulate exactly which checks
should be performed in order to verify the election record that will be pub-
lished in this pilot, and second, to specify exactly where the data to be used
in performing these checks should be obtained within the published election
record.

This document, combined with the specifications [2, 1] should be sufficient
to build a correct ElectionGuard verifier for this pilot.

Note: this document has been amended from the draft of Novem-
ber 3, 2023. The only difference is a formula in Verification 1.I.

Global data values and notes

First we define the source for important constants across multiple verification
requirements:

p = constants.json → large prime (1)

q = constants.json → small prime (2)

g = constants.json → generator (3)

r = constants.json → cofactor (4)

n = context.json → number of guardians (5)

k = context.json → quorum (6)

Q = context.json → crypto base hash (7)

Q̄ = context.json → crypto extended base hash (8)

K = context.json → elgamal public key (9)

Hash serialization

The verifier shall calculate hash values according to the requirements below.
This is how hash calculations were to be performed in version 1.1 of Elec-
tionGuard [3], omitting the case of hashing sublists (e.g. H(A, (B,C))) which
are no longer part of any verification requirement.

The ElectionGuard specification requires, in many places, that a SHA-256
calculation be performed on some ordered, structured values. For instance:

HP = H(ver; "00", p, q, g)

Such an instruction is treated as a requirement to perform a particular SHA-
256 calculation modulo q on some input string derived from the inputs to the
H in the given notation.

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 3

Serializing a large integer. A large integer is converted to hexadecimal
notation with at most 1 leading zero, so as to represent the number as an even
number of hexadecimal digits, and represented as a utf-8 encoded string. The
hexadecimal digits beyond 9 shall be represented as capital letters A through
F. For instance, the number 123456789123456789 would be represented as the
string “01B69B4BACD05F15”.

Serializing a string. Strings are merely utf-8 encoded and not otherwise
altered when serialized.

Serializing a small integer. Small integers are converted to decimal nota-
tion and then encoded as a utf-8 string. “Small” integers are ones such as the
selection limit or indices, things that don’t need to have values approaching the
parameters p or q.

Serializing a list. The serialization of a list is calculated by serializing each of
the list elements in the given order, with the pipe character (‘|’) as a separator.
The pipe character occurs before each element and also after the final element,
so H(1, 2, 3, 4, 5) would be calculated based on the serialization |1|2|3|4|5|.

Where a semicolon separator is used in any formula for a hash (e.g. H(a; b))
it shall be regarded as no different from a comma separator.

Integerizing a SHA-256 output. A SHA-256 output is treated as a large
integer, and ultimately represented as a string. The SHA-256 output is first
treated as an array of bytes, then converted to an integer, big-endian style.
That integer is then reduced modulo q.

All values described using H() notation are ultimately considered to be num-
bers modulo q − 1 in this sense. When such values are subsequently used as an
input to another H() expression, they are treated as large integers and repre-
sented in hex as described above.

Examples.

• H("hello world") := SHA256(|hello world|) modulo q =

0x3658724c7b35cb1130e4896acfe5903d78bf219e68cf50a3252bf35800174ec6.

• H(1, 2, 3) := SHA256(|1|2|3|) modulo q =

0xe132dc90d35f9705f47bbabf0105c0bf1f10ae13ac463d02067b7ac47955797b.

• H(12) := SHA256(|12|) modulo q =

0xeca46619243c31b97422e995c44293a2fc08e63a0d1d0dbf17e49b462d450ad9

• H(1, "2|3") := SHA256(|1|2|3|) modulo q = H(1, 2, 3) =

0xe132dc90d35f9705f47bbabf0105c0bf1f10ae13ac463d02067b7ac47955797b.

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 4

Verification 1: Parameter validation

The verifier shall verify Verifications 1.A through 1.E of [1]. In addition, the
verifier shall calculate:

(1.1) HP = H(ver; "00", p, q, g)

(1.2) HM = H(HP ; "01", manifest hash),

and then check Verification 1.I:

(1.I) The election base hash Q satisfies Q = H(HP ; "02", n, k,HM).1

Data required.

• For Verification 1.A, the “ElectionGuard specification version used to gen-
erate the election record” is manifest.json → spec version, and the
expected value shall be "1.0".

• ver shall be the ASCII string "v2.0" padded with zeros afterwards to
form a 32 byte value. That is,

ver = 0x76322E30 00000000 00000000 00000000

00000000 00000000 00000000 00000000

• manifest hash = context.json → manifest hash.

Verification 2: Guardian public-key validation

The verifier shall verify Verifications 2.A and 2.B of [1] and Verification 2.A of
[2], which shall be labeled “2.D”.

Data required. For each i in [1, n] and each j in [0, k − 1], we need:

vi,j = guardians/guardians n.json

→ coefficient proofs[j]

→ response

ci,j = guardians/guardians n.json

→ coefficient proofs[j]

→ challenge

Ki,j = guardians/guardians n.json

→ coefficient proofs[j]

→ public key

Where n and k are globally-defined values, see equations 5 and 6.

1This formula has been amended from the previous version of the requirements document
which was dated November 3, 2023. The previous formula was Q = H(HP ; "02", HM , n, k).

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 5

Verification 3: Election public-key validation

The verifier shall verify Verifications 3.A and 3.B of [1].

Data required. For each i in [1, n], we need:

Ki = guardians/guardians n.json → key

Verification 4: Extended base hash validation

The verifier shall check Verification 4.B:

(4.B) The extended base hash value Q̄ satisfies

Q̄ = H(Q, "12",K,HC)

Data required. We need HC = context.json → commitment hash.

Verification 5: Well-formedness of selection en-
cryptions

The verifier shall compute calculations 4.1 through 4.4 of [2] and verify Veri-
fications 4.A through 4.B of [2], which shall be labeled “5.D” through “5.E”,
respectively. In addition, the verifier shall check Verification 5.F:

(5.F) The equation

(c0 + c1) mod q = H("21", Q̄,K, α, β, a0, a1, b0, b1)

is satisfied.

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 6

Data required. For each ballot in submitted ballots, each contest in that
ballot, and each selection in that contest:

v0 = ballot → contests[] → ballot selections[]

→ proof → proof zero response

c0 = ballot → contests[] → ballot selections[]

→ proof → proof zero challenge

v1 = ballot → contests[] → ballot selections[]

→ proof → proof one response

c1 = ballot → contests[] → ballot selections[]

→ proof → proof one challenge

α = ballot → contests[] → ballot selections[]

→ ciphertext → pad

β = ballot → contests[] → ballot selections[]

→ ciphertext → data

Clarifications. In the formula (4.5) of [2] for the value c, 04 should be inter-
preted as a string.

Verification 6: Adherence to vote limits

The verifier shall perform no verifications relating to Verification 6 per EG
statement of goals [4].

Verification 7: Validation of confirmation codes

The verifier shall perform Verification 7.C of [1].
The verifier shall perform no other verifications related to Verification 7 per

EG statement of goals [4].

Data required. For each ballot, ballot → code is required.

Verification 8: Correctness of ballot aggregation

The verifier shall perform Verifications 8.A and 8.B of [1].

Data required. For each contest (index cidx) and each selection (index sidx)
in encrypted tally.json, we require the values A and B, and also the correct

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 7

set of ballot-specific values {αj , βj}.

A = encrypted tally.json → contests[cidx] → selections[sidx]

→ ciphertext → pad

B = encrypted tally.json → contests[cidx] → selections[sidx]

→ ciphertext → data

A ballot ballot in the submitted ballots directory shall be considered a
“cast” ballot if and only if ballot → code does not match spoiled → name for
any spoiled ballot spoiled in the spoiled ballots directory.

Where ballot is a cast ballot, and cidx′ and sidx′ are indices such that

ballot → contests[cidx′] → object id =

encrypted tally.json → contests[cidx] → object id

and

ballot → contests[cidx′] → ballot selections[sidx′]

→ object id =

encrypted tally.json → contests[cidx]

→ selections[sidx] → object id,

include αj , βj in the products where

αj = ballot → contests[cidx′] → ballot selections[sidx′]

→ ciphertext → pad

βj = ballot → contests[cidx′] → ballot selections[sidx′]

→ ciphertext → data

Verification 9: Correctness of tally decryptions

The verifier shall perform Verification 9.A of [1], and shall also check Verification
9.C:

(9.C) The challenge value c satisfies c = h8 where

• h1 = H("30"),

• h2 = H(h1, Q̄),

• h3 = H(h2,K),

• h4 = H(h3, A),

• h5 = H(h4, B),

• h6 = H(h5, a),

• h7 = H(h6, b), and

• h8 = H(h7,M).

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 8

Data required. For each contest (index cidx) within tally.json → contests[]
and each selection (index sidx) within tally.json → contests[cidx] → selections[],
find cidx′ be such that

encrypted tally.json → contests[cidx′] → object id =

tally.json → contests[cidx] → object id

and find sidx′ such that

encrypted tally.json → contests[cidx′] → selections[sidx′]

→ object id

= tally.json → contests[cidx] → selections[sidx]

→ object id.

Failure to find cidx′ or sidx′ shall result in a rejection of these Verifications.
We need A,B, T, c, v:

A = encrypted tally.json → contests[cidx′] → selections[sidx′]

→ ciphertext → pad

B = encrypted tally.json → contests[cidx′] → selections[sidx′]

→ ciphertext → data

T = tally.json → contests[cidx] → selections[sidx]

→ value

c = tally.json → contests[cidx] → selections[sidx]

→ proof → challenge

v = tally.json → contests[cidx] → selections[sidx]

→ proof → response

Verification 10: Validation of correct decryption
of tallies

The verifier shall perform Verifications 10.A through 10.E of [1].

Data required. For each contest and each selection within that contest, we
need T, t where:

T = tally.json → contests[] → selections[] → value

t = tally.json → contests[] → selections[] → tally

For Verifications 10.B through 10.E, the “text labels” are:

• contest text labels in tally: tally.json → contests[] → object id

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 9

• contest text labels in manifest: manifest.json → contests[] → object id

• option text labels in tally: tally.json → contests[] → selections[] →
object id

• option text labels in manifest: manifest.json → contests[] → selections[] →
object id

• contest text labels in a submitted ballot: ballot → contests[] → object id

Verification 11: Correctness of decryptions of con-
test data

The verifier shall perform no checks relating to Verification 11 per EG statement
of goals [4].

Verification 12: Correctness of decryptions for
challenged ballots

The verifier shall perform Verification 12.A of [1], and shall also verify Verifica-
tion 12.C:

(12.C) The challenge value c satisfies c = h8 where

• h1 = H("30"),

• h2 = H(h1, Q̄),

• h3 = H(h2,K),

• h4 = H(h3, α),

• h5 = H(h4, β),

• h6 = H(h5, a),

• h7 = H(h6, b), and

• h8 = H(h7,M).

Data required. For each challenged ballot spoiled and each contest (index
cidx) within that ballot, and each selection (index sidx) within that contest, we
need the input values α, β, c, v, S.

The verifier first must find B(spoiled) - a ballot in the submitted ballots

directory such that B(spoiled) → code = spoiled → name.
Failure to locate B(spoiled) shall result in a failure of this Verification for

this spoiled ballot.

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 10

Then we can calculate:

α = B(spoiled) → contests[cidx′] → ballot selections[sidx′]

→ ciphertext → pad

β = B(spoiled) → contests[cidx′] → ballot selections[sidx′]

→ ciphertext → data

S = spoiled → contests[cidx] → selections[sidx]

→ value

c = spoiled → contests[cidx] → selections[sidx]

→ proof → challenge

v = spoiled → contests[cidx] → selections[sidx]

→ proof → response

Verification 13: Validation of correct decryption
of challenged ballots

The verifier shall perform Verifications 13.A through 13.F of [1].

Data required. For Verifications 13.A-C, we require the following for each
spoiled ballot spoiled, each contest (index cidx) in that ballot, and each selection
within that contest: S, σ, L.

The S and σ values are:

S = spoiled → contests[cidx] → selections[] → value

σ = spoiled → contests[cidx] → selections[] → tally

The vote limit L is determined by the manifest. First we must find cidx′

such that

manifest.json → contests[cidx′] → object id =

spoiled → contests[cidx] → object id

Failure to find any such cidx shall result in a failure of this Verification.
Then,

L = manifest.json → contests[cidx′] → votes allowed.

Again, do not assume that the range limit in the corresponding encrypted
ballot accurately reflects the vote limit.

For Verifications 13.D through 13.F, the “text labels” are:

• contest text labels in spoiled ballot: spoiled → contests[] → object id

• contest text labels in manifest: manifest.json → contests[] → object id

Copyright (C) 2023 The ElectionGuard Partners and The MITRE Corporation, All Rights Deserved. 11

• option text labels in spoiled ballot: spoiled → contests[] → selections[] →
object id

• option text labels in manifest: manifest.json → contests[] → selections[] →
object id

Clarifications. In all cases for Verification 13.B, the range of “valid values”
shall be the set {0, 1}.

Verifications 14-18

The verifier shall perform no verifications corresponding to Verifications 14, 15,
16, 17, or 18, per EG statement of goals [4].

References

[1] Josh Benaloh and Michael Naehrig. ElectionGuard Design Specification.
Version 2.0.0, August 15, 2023.

[2] Josh Benaloh and Michael Naehrig. ElectionGuard Design Specification.
Version 1.53, January 20, 2023.

[3] Josh Benaloh and Michael Naehrig. ElectionGuard Specification v.1.1.

[4] The ElectionGuard Partners. College Park, Maryland, 2023 information
page on electionguard.vote.

